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Abstract

Human age is considered an important biometric trait
for human identification or search. Recent research shows
that the aging features deeply learned from large-scale
data lead to significant performance improvement on facial
image-based age estimation. However, age-related ordinal
information is totally ignored in these approaches. In this
paper, we propose a novel Convolutional Neural Network
(CNN)-based framework, ranking-CNN, for age estimation.
Ranking-CNN contains a series of basic CNNs, each of
which is trained with ordinal age labels. Then, their bi-
nary outputs are aggregated for the final age prediction. We
theoretically obtain a much tighter error bound for ranking-
based age estimation. Moreover, we rigorously prove that
ranking-CNN is more likely to get smaller estimation errors
when compared with multi-class classification approaches.
Through extensive experiments, we show that statistically,
ranking-CNN significantly outperforms other state-of-the-
art age estimation models on benchmark datasets.

1. Introduction
One major issue in age estimation models is how to ex-

tract effective aging features from a facial image. In the
past decade, many efforts have been devoted to aging fea-
ture representations. Simple geometry features and tex-
ture features were first adopted in [20]. Later on, Bio-
logically Inspired Features (BIF) [15] were proposed and
widely adopted in age estimation applications. More re-
cently, Scattering Transform (ST) [2] was also proposed as
an improvement over BIF by adding filtering routes. Usu-
ally, these features can be further enhanced through mani-
fold learning, e.g., Orthogonal Locality Preserving Projec-
tion (OLPP) [14].

The other important component in an age estimation
model is the estimator. Commonly, age estimation is
characterized to be a classification or regression problem.
Classification models include k Nearest Neighbors [13],
Multilayer Perceptrons [21], and Support Vector Machines
(SVM) [15]. For regression methods, quadratic regression
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Figure 1. Ranking-CNN for facial image-based age estimation.

[14] and Support Vector Regression (SVR) [15] were con-
sidered in the literature. More recently, deep learning tech-
niques such as Convolutional Neural Networks (CNN) have
been applied to human age estimation to learn aging fea-
tures directly from large-scale facial data [39]. Experi-
mental results show that the deeply-learned aging patterns
lead to significant performance improvement on benchmark
datasets [37] as well as unconstrained photos [25]. How-
ever, multi-class classification completely ignores the ordi-
nal information in age labels, and regression over-simplifies
it to a linear model while human aging pattern is generally
nonlinear. Recently, cost-sensitive ranking techniques have
been introduced to age estimation [2].

In this paper, we propose a novel age ranking approach
based on CNN. Specifically, we propose a ranking-CNN
model that contains a series of basic CNNs, each of which
has a sequence of convolutional layers, sub-sampling layers
and fully connected layers. Basic CNNs are initialized with
the weights of a pre-trained base CNN and fine-tuned with
the ordinal age labels through supervised learning. Then,
their binary outputs are aggregated to make the final age
prediction. Fig. 1 shows an illustration of our model.
Comparing with prior work where the same set of features
was used for all age groups, in ranking-CNN, features are



learned independently in each age group to depict different
aging patterns, which leads to significant performance gain.
The major contribution of this work is summarized as fol-
lows:

• To the best of our knowledge, ranking-CNN is the first
work that uses a deep ranking model for age estima-
tion, in which binary ordinal age labels are used to
train a series of basic CNNs, one for each age group.
Each basic CNN in ranking-CNN can be trained using
all the labeled data, leading to better performance of
feature learning and also preventing overfitting.

• We provide a much tighter error bound for age ranking
than that introduced in [2], which claimed that the final
ranking error is bounded by the sum of errors gener-
ated by all the classifiers. We obtain the approximation
for the final ranking error that is controlled by the max-
imum error produced among sub-problems. From a
technical perspective, the tighter error bound provides
several advantages for the training of ranking-CNN.

• We prove that ranking-CNN, by taking the ordinal re-
lation between ages into consideration, is more likely
to get smaller estimation errors when compared with
multi-class classification approaches (i.e., CNNs using
the softmax function). Moreover, through extensive
experiments, we show that statistically, ranking-CNN
significantly outperforms other state-of-the-art age es-
timation methods.

The rest of this paper is arranged as follows. In Section 2,
we briefly review related work in age estimation and CNN.
In Section 3, we introduce ranking-CNN for age estimation,
establish its theoretical error bound, and compare it with
softmax-based multi-class CNNs. In Section 4, we present
our age estimation results on the benchmark datasets. Fi-
nally, we conclude in Section 5.

2. Related Work
2.1. Age Estimation

One of the earliest age estimation model can be traced
back to [22], in which Active Appearance Model (AAM)
[6] was employed to extract shape and appearance features
from facial images. Later, in [10], the aging process was
simulated using AAM for the same individual with a se-
ries of age-ascending facial images so that specific mod-
els associated with different people’s aging processes can
be constructed. Also, to interpret the long-term aging sub-
space of a person, Geng et al. [11] proposed AGing pattErn
Subspace (AGES).

Since the available images for a specific person are typ-
ically very limited, many researchers focus on developing

non-personalized approaches instead. Yang and Ai [38]
adopted a real AdaBoost algorithm with Local Binary Pat-
terns [1]. Li et al. [26] proposed a method based on or-
dinal discriminative feature learning. In [15], BIF features
were shown to be effective for age estimation on various
datasets. Meanwhile, manifold learning algorithms were
incorporated to achieve better performance. In [14], Guo
et al. proposed to use aging manifold with locally adjusted
robust regressor.

More recently, CNN-based methods have been widely
adopted for age estimation due to its superior performance
over existing methods. Yi et al. [39] introduced a multi-
task learning method with a relatively shallow CNN. Wang
et al. [37] trained a deeper CNN for extracting features from
different layers. Levi et al. validated CNN’s performance
on unconstrained facial images [25].

Instead of multi-class classification and regression meth-
ods, ranking techniques were introduced to the problem
of age estimation. In [2], a cost-sensitive ordinal ranking
framework was proposed with ST features. In [29], Niu et
al. proposed to formulate age estimation as an ordinal re-
gression problem with the use of multiple output CNN.

2.2. Convolutional Neural Networks

There are numerous kinds of CNN models developed in
deep learning. The exact forms could vary, but the major
components and computations are similar. CNN models de-
rived from LeNet [24] consist of alternating convolutional
and pooling layers followed by fully-connected layers with
the input to successive layers being the feature maps from
previous layers. Weights in layers are updated simultane-
ously for representative features and classification with a
specific loss function through back propagation.

CNNs have been widely used on a variety of applica-
tions. In natural language processing, SENNA system has
achieved state-of-the-art performance on various tasks [5].
In text classification, CNN architectures have been widely
adopted and achieved superior outcomes [18]. In the com-
puter vision field, great successes have been achieved in im-
age classification [19], object detection [12], face recogni-
tion [34] and image segmentation [27].

Recently, with the implementation using GPUs [19, 17],
CNN models with deep architectures have achieved break-
throughs on object recognition problems in large-scale im-
age datasets, e.g., the ImageNet dataset [7]. To build more
effective CNN models, several new components were intro-
duced: activation unit such as rectified linear unit (ReLU)
[28] helps to accelerate the convergence during training and
has a positive influence on the performance [19]; regularizer
like dropout prevents overfitting by setting some activation
units to zero in a specific layer [33]; and batch normaliza-
tion allows the use of much higher learning rates to make
training faster and to improve performance [16].
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Figure 2. Architecture of a basic binary CNN

3. Ranking-CNN for Age Estimation
The training of ranking-CNN consists of two stages: pre-

training with facial images and fine-tuning with age-labeled
faces. First, a base network is pre-trained with uncon-
strained facial images [9] to learn a nonlinear transforma-
tion of the input samples that captures their main variation.
From the base network, we then train a series of basic binary
CNNs with ordinal age labels. Specifically, we categorize
samples into two groups: with ordinal labels either higher
or lower than a certain age, and then use them to train a cor-
responding binary CNN. The fully connected layers in the
binary CNN first flatten the features obtained in the previ-
ous layers and then relate them to a binary prediction. The
weights are updated through stochastic gradient descent by
comparing the prediction with the given label. Finally, all
the binary outputs are aggregated to make the final age pre-
diction. In the following, we present our system in details.

3.1. Basic Binary CNNs

As shown in Fig. 2, a basic CNN has three convolutional
and sub-sampling layers, and three fully connected layers.
Specifically, C1 is the first convolutional layer with feature
maps connected to a 5× 5 neighboring area in the input.
There are 96 filters applied to each of the 3 channels (RGB)
of the input, followed by Rectified Linear Unit (ReLU) [28].

S2 is a sub-sampling layer with feature maps connected
to corresponding feature maps in C1. In our case, we use
max pooling on 3× 3 regions with the stride of 2 to em-
phasize the most responsive points in the feature maps. S2
is followed by local response normalization (LRN) that can
aid generalization [19] . C3 works in a similar way as C1
with 256 filters in 96 channels and 5×5 filter size followed
by ReLU. Layer S4 functions similarly as S2, and is fol-
lowed by LRN. Then, C5 is the third convolutional layer
with 384 filters in 256 channels and smaller filter size 3×3,
followed by the third max pooling layer S6.

F7 is the first fully connected layer in which the feature
maps are flattened into a feature vector. There are 512 neu-
rons in F7 followed by ReLU and a dropout layer [33]. F8 is
the second fully connected layer with 512 neurons that re-
ceives the output from F7 followed by ReLU and another
dropout layer. F9 is the third fully connected layer and
computes the probability that an input x (i.e., output after
F8) belongs to class i using the logistic function. The op-
timal model parameters of a network are typically learned
through minimizing a loss function. We use the negative

log-likelihood as the loss function, and minimize it using
stochastic gradient descent.

3.2. Ranking-CNN

Assume that xi is the feature vector representing the ith
sample and yi ∈ {1, ...,K} is the corresponding ordinal la-
bel. To train the k-th binary CNN, the entire dataset D is
split into two subsets, with age values higher or lower (or
equal to) than k,

D+
k = {(xi,+1)|yi > k}, D−

k = {(xi,−1)|yi ≤ k}. (1)

Based on different splitting of D, K −1 basic networks can
be trained from the base one. Note that in our model, each
network is trained using the entire dataset, typically result-
ing in better ranking performance and also preventing over-
fitting. Given an unknown input xi, we first use the basic
networks to make a set of binary decisions and then aggre-
gate them to make the final age prediction r(xi):

r(xi) = 1+
K−1

∑
k=1

[ fk(xi)> 0]. (2)

where fk(xi) is the output of the basic network and [· ]
denotes the truth-test operator, which is 1 if the inner con-
dition is true, and 0 otherwise. It can be shown that the
final ranking error is bounded by the maximum of the bi-
nary ranking errors. That is, the ranking-CNN results can be
improved by optimizing the basic networks. We mathemat-
ically prove this in Section 3.2.1 followed by the theoretical
comparison between ranking and softmax-based multi-class
classification in Section 3.2.3.

3.2.1 Error Bound

In ranking-CNN, we divide an age ranking estimation prob-
lem, ranging from 1, · · · ,K, into a series of binary classifica-
tion sub-problems (K−1 classifiers). By aggregating the re-
sults of each sub-problem, we then obtain an estimated age
r(x). To assure a better overall performance of the model,
a key issue is whether the ranking error can be reduced if
we improve the accuracy of the binary classifiers. We rigor-
ously address this issue with formal mathematical proof in
this section.

Here, we provide a much tighter error bound for age
ranking than that introduced in [2], which claims that the
final ranking error is bounded by the sum of errors gen-
erated by all the classifiers. We adopt the idea in [2] that
divides the errors of sub-problems into two groups: over-
estimated and underestimated errors. However, instead of
simply aggregating errors, we rearrange them in an increas-
ing order and go deep into the analysis of the underlying
differences between any adjacent sub-classifier errors inside
each group. By the accumulation of those differences, we
theoretically obtain an approximation for the final ranking



error, which is controlled by the maximum error produced
among sub-problems.

We denote E+ = ∑
K−1
k=1 γ

+
k as the number of mis-

classifications fk(x) > 0 when the actual value y < k, k =
1, · · · ,K − 1. Similarly, we denote E− = ∑

K−1
k=1 γ

−
k as the

opposite case, where γ
+
k = [ fk(x) > 0][y ≤ k] and γ

−
k =

[ fk(x) < 0][y > k], and [·] is an indicator function taking
value of 1 when the condition in [·] holds, 0 otherwise.

For any observation (x,y), we define the cost function
(error) for each classifier as:

ek(x) =

{
e+k = (k− y+1)γ+k y ≤ k
e−k = (y− k)γ−k y > k.

(3)

Thus, we have a theorem for the error bound of final ranking
error:

Theorem 1 For any observation (x,y), in which y> 0 is the
actual label (integer), then the following inequality holds:

|r(x)− y| ≤ max
k

ek(x), (4)

where r(x) is the estimated rank of age, k = 1, · · · ,K − 1.
That is, we can diminish the final ranking error by minimiz-
ing the greatest binary error.

Proof
Denote ek(x) in (3) as ek for simplicity. We split the

proof into two parts. Firstly, we show |E+−E−|= |r(x)−
y|. Secondly, we demonstrate maxk ek ≥ max{E+,E−}. By
|E+−E−|<max{E+,E−} for E+ and E− nonnegative, the
inequality (4) follows.

Firstly, we begin by definition:

r(x) = 1+∑
K−1
k=1 [ fk(x)]

= 1+∑
K−1
k=1 ([ fk(x)> 0][y ≤ k]+ [ fk(x)> 0][y > k])

= 1+E++∑
K−1
k=1 [ fk(x)> 0][y > k].

(5)
Subtracting (E+−E−) on both sides, we get

r(x)− (E+−E−)
= 1+∑

K−1
k=1 [ fk(x)> 0][y > k]+∑

K−1
k=1 [ fk(x)≤ 0][y > k]

= 1+∑
K−1
k=1 ([ fk(x)> 0]+ [ fk(x)≤ 0])[y > k]

= 1+∑
K−1
k=1 [y > k]

= y.
(6)

Thus |r(x)− y|= |E+−E−| holds.
Secondly, we extract all e+k > 0 and rearrange them in

an increasing order denoted as a set {e+
( j), j = 1,2, · · · ,E+}.

Similarly, we do the same operation on e−k and have the set
{e−

( j), j = 1,2, · · · ,E−}, where for any random variable ξ ,
ξ(·) denotes the order statistics.

Since y is an integer, by (3), e+
(1) ≥ 1 and |e+

( j)−e+
( j−1)| ≥

1 for any j ∈ {1,2, · · · ,E+}. We observe that:

e+(E+) ≥ e+(1)+ |e+(2)− e+(1)|+ · · ·+ |e+(E+)− e+(E+−1)|. (7)

It follows e+
(E+)

≥ E+. Similarly, we can show e−
(E−) ≥ E−.

Then, maxk ek =max{e+
(E+)

,e−
(E−)}≥max{E+,E−}, which

completes the proof.

3.2.2 Technical Contribution of the New Error Bound

Ranking-CNN can be seen as an ensemble of CNNs, fused
with aggregation. By showing that the final ranking error
is bounded by the maximum error of the binary rankers,
we make significant technical contribution in the following
aspects:

1. Theoretically, it was mentioned in both [2] and [29]
that the inconsistency issue of the binary outputs could
not be resolved because that would make the train-
ing process significantly complicated. The aggrega-
tion was just carried out without explicit understanding
of the inconsistency. With the tightened error bound,
we can confidently demonstrate that the inconsistency
doesn’t actually matter because as long as the maxi-
mum binary error is decreased, the error produced by
inconsistent labels can be ignored. It would neither
influence the final estimation error nor complicate the
training procedure.

2. Methodologically, the tightened bound provides ex-
tremely helpful guidance for the training of ranking-
CNN. The training of an ensemble of deep learning
models is typically very time consuming, especially
when the number of sub-models is large. Based on
our results, it is technically sound to focus on the sub-
models with the largest errors. This training strategy
will lead to more efficient training to achieve the de-
sired performance gain. The training strategy can also
be extended to ensemble learning with other decision
fusion methods.

3. Mathematically, based on the new error bound, we can
rigorously derive the expectation of prediction error
of ranking-CNN and prove that ranking-CNN outper-
forms other softmax-based deep learning models. The
detailed proof is given in the next section.

3.2.3 Ranking v.s Softmax

In this section, we focus on demonstrating that ranking-
CNN outperforms softmax method because it is more likely
to get smaller prediction error |r(x)− y|. The reason is that
softmax failed to take the ordinal relation between ages into
consideration. Thus, instead of a softmax classifier, ranking
method is preferred for age estimation.

A basic CNN in ranking-CNN differs from the softmax
multi-class classification approach in the output layer. Sup-
pose after fully-connected layer, we get z1,z2, · · ·zK from K



networks. Denote ŷ as the estimated age label, and ai = ezi

where e(·) is the natural exponential function. For softmax,
the posterior probability of each class is given by:

P(ŷ ∈ i|x) = ezi

∑
K
k=1 ezk

=
ai

∑
K
k=1 ak

, (8)

for i = 1, · · · ,K. Then, the expected error given the label of
the observation (x,y) is

E(|r(x)− y||y) = ∑
K
i=1 |i− y|P(ŷ = i|x). (9)

For ranking-CNN, we use K −1 classifiers to determine
ordinal relation between adjacent ages. The posterior prob-
ability for a prediction of age greater than a specific age i is
given by:

P( fi(x)> 0|x) = ezi+1

ezi + ezi+1
=

ai+1

ai +ai+1
. (10)

Then, the expected error for a given sample is

E(|r(x)− y||y) = ∑
K
i=1 |i− y|P(ŷ = i|x). (11)

We present a theorem for a three ordinal class problem. In
the theorem, we use a,b,c to represent a1,a2,a3 respec-
tively for better clarity.

Theorem 2 Suppose we have classes 1, 2 and 3 with
a,b,c > 0 respectively. There exists an ordinal relation:
1 < 2 < 3. Denote the rank obtained by ranking-CNN as
r1(x) and the result by softmax as r2(x). Then

E(|r1(x)− y|)< E(|r2(x)− y|). (12)

Proof. Given a sample with label 1, the expected errors for
ranking-CNN and softmax are:

E(|r1(x)− y||y = 1)
= 2P( f1(x)> 0, f2(x)> 0|x)+P( f1(x)> 0, f2(x)< 0|x)
+P( f1(x)< 0, f2(x)> 0|x)

= 2
b

a+b
c

b+ c
+

b
a+b

b
b+ c

+
a

a+b
c

b+ c

=
2bc+b2 +ac
(a+b)(b+ c)

,

(13)
and

E(|r2(x)− y||y = 1) = 2P(r2(x) = 2|x)+P(r2(x) = 3|x)

=
2c+b

a+b+ c
,

(14)
respectively.

Similarly, given y = 2,

E(|r1(x)− y||y = 2)
= P( f1(x)> 0, f2(x)> 0|x)+P( f1(x)< 0, f2(x)< 0|x)

=
ab+bc

(a+b)(b+ c)
,

(15)

E(|r2(x)− y||y = 2) = P(r2(x) = 1|x)+P(r2(x) = 3|x)
=

a+ c
a+b+ c

.

(16)
Given y = 3,

E(|r1(x)− y||y = 3)
= 2P( f1(x)< 0, f2(x)< 0|x)+P( f1(x)> 0, f2(x)< 0|x)
+P( f1(x)< 0, f2(x)> 0|x)

=
2ab+b2 +ac
(a+b)(b+ c)

,

(17)

E(|r2(x)− y||y = 3) = 2P(r2(x) = 1|x)+P(r2(x) = 2|x)

=
2a+b

a+b+ c
.

(18)
Thus, for ranking-CNN, it follows

E(|r1(x)− y|) = ∑
3
i=1 E(|r1(x)− i||y = i)

2+
ab+bc

(a+b)(b+ c)
.

(19)

Similarly, for softmax,

E(|r2 − y|) = ∑
3
i=1 E(|r2(x)− i||y = i) = 2+

a+ c
a+b+ c

.

(20)
Since

a+ c
a+b+ c

− ab+bc
(a+b)(b+ c)

=
a2c+ c2a

(a+b)(b+ c)(a+b+ c)
> 0,

(21)

then we conclude

E(|r1(x)− y|)< E(|r2(x)− y|). (22)

Furthermore, the cases for K = 4,5, · · · could be shown
in a similar way by induction. However, when the number
of class K increases, the analytic expression of the distribu-
tion for each class i = 1, · · · ,K, becomes

P(ŷ = i|y) = ∑
A∈Fi

∏
j∈A

p j ∏
j∈Ac

(1− p j), (23)

satisfying a Poisson-Binomial distribution, where p j =
a j

a j−1+a j
, Fi is the subset of i integers that could be se-

lected from {1,2, · · · ,K} and Ac is the complement of A.
Notice that Fi represents CK

2 possible cases. Then, to com-
pute the expected value becomes dreadful since listing all
the probability out as we did in theorem 2 seems impracti-
cal. Though Le Cam et al. [23] gave an approximation of



Poisson-Binomial by a Poisson distribution, the computa-
tion for

E(|r1(x)− y|) =
K

∑
y=1

K

∑
r=1

|r− y|P(ŷ = r) (24)

is still unrealistic. So, we generalize with the help of learn-
ing theory.

Theorem 3 Suppose the VC dimension of each basic CNN
classifier’s hypothesis spaces Hi is d, the sample size for
training is m. Then for any δ ∈ [0,1], with probability at
least 1−δ , the expected error of the ranking-CNN is upper
bounded as follows:

ED|r(x)− y| ≤ max
k

êk(x)+2

√
d log(2m)+ log( 2

δ
)

m
(25)

where êk(x) denotes the empirical values for EDek(x).

Proof. Taking expectation on both sides of Eq. (4), we get

ED|r(x)− y| ≤ ED max
k

ek(x) (26)

Using Vapnik-Chervonenkis theory [35], the desired result
follows.

Remark 4 Notice the expected error for ranking-CNN is
bounded by the maximum training error produced by its ba-
sic CNNs with binary output, adding a term associated with
VC dimension. Since the VC dimension d of a softmax out-
put CNN is greater than that of a basic CNN presented in
Fig. 2 [32], if the weights of previous layers are fixed, it re-
sults in a greater second term on right hand side of Eq. (25)
for a CNN with softmax output layer. It follows that given
the same training samples, ranking-CNN is more likely to
attain a smaller error by minimizing the training errors (the
first term in Eq. (25)) than the one with a softmax output.

The error bound in Eq. (25) provides a solid support for our
framework. We will further verify this conclusion in the
sense of statistical significance by t-test later in the experi-
ment section.

3.3. Age Estimation

When humans predict a person’s age, it is generally eas-
ier to determine if a person is elder than a specific age than
directly giving an exact age. With ranking-CNN, it pro-
vides a framework for simultaneous feature learning and
age ranking based on facial images. The rationale of us-
ing ranking-CNN for age estimation is that the age labels
are naturally ordinal, and ranking-CNN can keep the rela-
tive ordinal relationship among different age groups.

First, we pre-train a base network with 26,580 image
samples from the unfiltered faces dataset [9]. The age

group labels for these images are used in training as sur-
rogate labels [8]. Then, we fine-tune our ranking-CNN
model on the most commonly used age estimation bench-
mark dataset: MORPH Album 2 [30]. MORPH contains
55,134 facial images with the age range from 16 to 77. Fol-
lowing the settings used in some recent work on age esti-
mation [29, 37, 4, 3], we randomly select 54,362 samples
in the age range between 16 and 66 from MORPH dataset.
The age and gender information of the selected samples is
shown in Table 1. Note that these images are not used in the
pre-training stage. All the selected samples are then divided
into two sets: 80% of the samples are used for basic net-
works training and the rest 20% samples for testing. There
is no overlapping between the training and testing sets, and
we use 5-fold cross-validation to evaluate the performance
during experiments.

Table 1. The age and gender information of the 54,362 samples
randomly selected from MORPH Album 2.

<20 20-29 30-39 40-49 >50 Total
Male 6543 13849 12322 9905 3321 45940
Female 829 2291 2886 1975 441 8422
Total 7372 16140 15208 11880 3762 54362

We adopt a general pre-processing procedure for face de-
tection and alignment before feeding the raw data to the net-
works. Specifically, given an input color image, we first
perform face detection using Harr-based cascade classifiers
[36]. Then, face alignment is conducted based on the loca-
tions of eyes. Finally, the image is resized to a standard size
of 256×256×3 for network training and age estimation.

4. Experiments
In this section, we demonstrate the performance of

ranking-CNN through extensive experiments. We imple-
mented the architecture for ranking-CNN in the GPU mode
with Caffe [17]. For the 3+ 3 architecture of a basic CNN
shown in Fig. 2, it is derived from a simplified version of the
ImageNet CNN [19] with fewer layers for higher efficiency
[25]. The network is initialized with random weights fol-
lowing Gaussian distribution, the mean is 0, and standard
deviation is 0.01.

For our hardware settings, we use a single GTX 980
graphics card (including 2,048 CUDA cores), i7-4790K
CPU, 32GB RAM, and 2TB hard disk drive. The training
time for the base CNN with the selected 3+ 3 architecture
is around 6 hours. Fine-tuning takes about 20 to 30 min-
utes for each basic CNN. Totally, it takes about 30 hours to
pre-train the base CNN and fine-tune 50 basic CNNs.

4.1. Evaluation Metrics

For multiple age estimation, we compared the features
learned by ranking-CNN with the ones obtained through



Table 2. Comparison of MAE among different combinations of features and estimators. The lowest MAE is highlighted in bold. A dash in
the table means that the selected feature is not applicable to the selected estimator.

ENGINEERED FEATURES LEARNED FEATURES

BIF+OLPP ST CNN FEATURE RANKING-CNN FEATURE

CLASSIFICATION SVM 4.99 5.15 3.95 -
MODEL MULTI-CLASS CNN - - 3.65 -
RANKING RANKING-SVM 5.03 4.88 - 3.63
MODEL RANKING-CNN - - - 2.96

BIF+OLPP [15], ST[2], and multi-class CNN. BIF features
are implemented with Gabor filters in 8 orientations and 8
scales and followed by max-pooling. In addition, OLPP is
employed to learn the age manifold based on BIF features,
in which the top 1,000 eigenvectors are used. In ST, the Ga-
bor coefficients are scattered into 417 routes in two convo-
lutional layers and pooled with Gaussian smoothing. Multi-
class CNN is commonly used for age estimation [25, 39],
but it completely ignores the ordinal information in age la-
bels. Its structure is similar to a basic CNN (three convolu-
tional and pooling layers and three fully connected layers)
with the exception that the last fully-connected layer con-
tains multiple outputs corresponding to the number of ages
to be classified instead of the binary ones. As for the age es-
timators, SVM is selected for comparison due to its proved
performance [15]. In ranking-based approach (Ranking-
SVM), following [2], SVM is used as the binary classifier
for each age label and the results are aggregated to give the
final output.

The comparison and evaluation of different methods in
our experiments are reported in terms of accuracy of each
binary ranker as well as two widely adopted performance
measures [29, 2]: Mean Absolute Error (MAE) and Cumu-
lative Score (CS). MAE computes the absolute costs be-
tween the exact and the predicted ages (the lower the bet-
ter): MAE = ∑

M
i=1 ei/M, where ei = |l̂i − li| is the absolute

cost of misclassifying true label li to l̂i, and M is the to-
tal amount of testing samples. CS indicates the percentage
of data correctly classified in the range of (li − L, li + L),
a neighbor range of the exact age li (the larger the better):
CS(L) = ∑

M
i=1[ei ≤ L]/M, where [· ] is the truth-test operator

and L is the parameter representing the tolerance range.
Also, we used paired t-test to demonstrate the statisti-

cal significance of our empirical comparison. We employ
paired t-test to determine if ranking-CNN significantly out-
performs other methods. A two-sample t-statistic with un-
known but equal variance is computed.

4.2. Age Estimation Results

In this section, we consider the age estimation problem
in the range between 16 and 66 years old and compare
ranking-CNN with other state-of-the-art feature extractors
and age estimators. As there are 51 age groups in this age
range, 50 binary rankers are needed for ranking approaches
(i.e., ranking-CNN and ranking-SVM). In our experiments,

43,490 samples (80% of all the randomly selected samples)
with binary labels are selected to train each basic network
or SVM in ranking-CNN and ranking-SVM, respectively.
The exactly same set of samples with multi-class labels are
used to train multi-class CNN and SVM, respectively. The
rest 10,872 samples were used for testing results. All exper-
iments are carried out with 5-fold cross-validation.

Basically, we have three sets of features: engineered
features (i.e., BIF+OLPP and ST), learned classification
features (Multi-class CNN) and learned ranking features
(ranking-CNN), and two sets of age estimators: classifica-
tion methods (i.e., SVM and Multi-class CNN) and rank-
ing methods (ranking-CNN and ranking-SVM). We report
MAE of all possible combinations of feature extractors and
age estimators (eight in total) in Table 2. A dash in the table
means that the selected feature set is not applicable to the
selected estimator.

As shown in Table 2, ranking-CNN with its features
achieves the lowest MAE of 2.96 in all the combinations.
Ranking-CNN features with Ranking-SVM achieves the
second best MAE result, and this validates the effectiveness
and generality of ranking-CNN features. In comparison, the
lowest MAE achieved by the learned classification features
is 3.65. Note the multi-class CNN represents the commonly
used CNN-based age estimation methods [25, 39]. Our ex-
perimental results strongly support the theoretical results
(ranking v.s. softmax) we presented in Section 3.2.3. An-
other fact we can see is that the performance of CNN-based
features gets weakened when combined with SVM-based
estimators. The lowest MAE achieved by engineered fea-
tures is 4.88 by ST+ranking-SVM. Notice that ST works
better with ranking-SVM, and BIF+OLPP works better with
SVM. This could be caused by the fact that in the literature
specific features were manually selected for certain estima-
tors to achieve the best performance.

Table 3. Comparison with MR-CNN, OR-CNN and DEX on the
MORPH dataset. The lowest MAE is highlighted in bold.

Ranking-CNN MR-CNN OR-CNN DEX
MAE 2.96 3.27 3.34 3.25

In Table 3, we compare ranking-CNN with the most re-
cent age estimation models, i.e., Ordinal Regression with
CNN (OR-CNN), Metric Regression with CNN (MR-CNN)
[29] and Deep EXpectation (DEX) [31]. Since the experi-
ments are all carried out on MORPH dataset and we fol-
lowed the settings in [29] for data partition, we can directly



Table 4. T test outcomes of all eight combinations of features and estimators. Numbers #1 to #8 correspond to eight compared models
in the sequence of: RANKING-CNN, RANKING-CNN FEATURE+RANKING-SVM, ST+RANKING-SVM, BIF+OLPP+RANKING-
SVM, MULTI-CLASS CNN, CNN FEATURE+SVM, ST+SVM and BIF+OLPP+SVM.

#1 #2 #3 #4 #5 #6 #7 #8
#1 RANKING-CNN NAN 1 1 1 1 1 1 1
#2 RANKING-CNN FEATURE

6.36e−148 NAN 1 1 0.85 1 1 1
+RANKING-SVM

#3 ST+RANKING-SVM 0 0 NAN 1 0 0 1 1
#4 BIF+OLPP+RANKING-SVM 0 0 1.79e−135 NAN 0 0 0.99 0.81
#5 MULTI-CLASS CNN 0 0.14 1 1 NAN 1 1 1
#6 CNN FEATURE+SVM 4.12e−276 8.90e−184 1 1 5.43e−24 NAN 1 1
#7 ST+SVM 0 0 1.94e−121 2.00e−4 0 0 NAN 3.66e−6

#8 BIF+OLPP+SVM 0 0 4.56e−90 0.18 0 0 0.99 NAN

compare the MAE of Ranking-CNN with the ones obtained
by MR-CNN, OR-CNN and DEX. Clearly, ranking-CNN
outperforms all MR-CNN, OR-CNN and DEX, and signifi-
cantly improves the performance of age estimation.
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Figure 3. Comparison on Cumulative Score with L in [0,10].

The comparison in terms of CS of the eight combina-
tions of features and estimators are given in Fig. 3. Clearly,
ranking-CNN outperforms all others across the entire range
of L (age error tolerance range) from 0 to 10. Specifically,
Ranking-CNN can reach the accuracy of 89.90% for L = 6,
and 92.93% for L = 7. The other fact we notice is that four
CNN-based methods reach a higher accuracy for L = 10
than the others.
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Figure 4. Accuracy of each binary ranker in ranking models.

In Fig. 4, we further compare the four ranking-based
methods and report their performance on each binary
ranker. Again, ranking-CNN demonstrates a consistent

outstanding performance throughout all binary problems.
Note that when the data for the binary rankers are not bal-
anced (and thus higher baseline accuracy, e.g., age< 20 and
age> 48), all rankers seem to perform quite well. However,
when it comes to the age range with more balanced data
(and thus lower baseline accuracy, age 20− 48), the supe-
rior performance of ranking-CNN is shown, and this would
lead to better overall performance of age estimation. Again,
our results clearly illustrated the remarkable improvement
of using ranking-CNN for age estimation.

Last, to demonstrate that the experimental results we ob-
tained do not happen simply by chance, we report in Table
4 the p-values from paired t-test at significant level 1%. In
Table 4, if p < 1%, we reject the null hypothesis. Other-
wise, we don’t. For example, when comparing “ranking-
CNN” with “ranking-CNN feature+ranking SVM”, the p-
value 6.36e−148 is much less than 0.01, which means that
we reject the null hypothesis that “the performance of
ranking-CNN is not significantly improved”. The “NaN”
in the table means we could not compare a method with
itself. As we can see, statistically, ranking-CNN signifi-
cantly outperforms all other methods, which implies if we
repeat the experiments for numerous times, then in 99% of
those experiments, ranking-CNN would significantly out-
perform. From the table, Ranking-CNN Feature+Ranking
SVM and the Multi-Class CNN tied for the second place,
followed by CNN Feature+SVM. ST+Ranking SVM stands
out among the engineered feature-based methods. Lastly,
BIF+OLPP+Ranking-SVM ties with BIF+OLPP+SVM,
and ST+SVM has no significant improvement than any
other methods.

5. Conclusion
In this paper, we proposed ranking-CNN, a novel deep

ranking framework for age estimation. We established a
much tighter error bound for ranking-based age estimation
and showed rigorously that ranking-CNN, by taking the
ordinal relation between ages into consideration, is more
likely to get smaller estimation errors when compared with
multi-class classification approaches. Through extensive



experiments, we show that statistically, ranking-CNN sig-
nificantly outperforms other state-of-the-art age estimation
methods on benchmark datasets.
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